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Stability analysis of finite difference schemes for 
heat equation with various thermal conductivity 

M. Rozina Khatun & Md. Shajib Ali 

Abstract- This paper presents the stability analysis of one-dimensional heat equation. We study the analytical solution of heat 
equation as an initial value problem in infinite space and realize the qualitative behavior of the solution in terms of heat diffusion 
co-efficient. We obtain the numerical solution of this equation by using the first order explicit centered difference scheme 
(forward time and central space (FTCS Techniques)) and a second order Crank-Nicolson scheme (CNS techniques) for 
prescribed initial and boundary data. We implement the numerical scheme by developing a computer programming code and 
present the stability analysis of explicit centered difference schemes and Crank-Nicolson scheme for heat equation. It’s found 
that CNS schemes gives better pointwise solutions then ECDS in terms of time step selection. 
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1 INTRODUCTION 

The heat equation is an important parabolic partial     

differential equation (PDE) which refer to the distribution of 

heat (or variation in temperature) in a given region over 

time. For better understanding of this paper, it is very 

significant that we realize the difference between heat and 

temperature. Heat is a procedure of energy transfer as a 

result of temperature difference between the two points. 

Thus, 'heat' is used to describe the energy transported 

through the heating process. On the other hand, temperature 

is a physical property of matter that describes the warmness 

or coldness of an object or environment. Therefore, no heat 

would be replaced between bodies of the same temperature. 

The heat equation is of vital importance in diverse scientific 

fields. In mathematics, this equation is the prototypical 

parabolic partial differential equation. In probability theory, 

the heat equation is coupled with the study of Brownian 

motion via the Fokker-Planck equation. In financial 

mathematics, this is use to solve the Black-Scholes partial 

differential equation. The diffusion equation, a general 

version of the heat equation, rises in joining with the study 

of chemical diffusion and other related processes. Many 

researchers have already been worked on it. Abbas, Z., Sajid, 

M., Hayat, T. 2006 [1] MHD boundary-layer flow of an 

upper-convected Maxwell fluid in a porous channel" 

Unsworth, J., Duarte, F. J. 1979 [2] Heat diffusion in a solid 

sphere and Fourier Theory.  Borjini, M.N., Mbow, C., 

Daguenet, M. 1999 [3] Numerical analysis of combined  

 

 

radiation and unsteady natural convection within a 

horizontal annular space. William F. Ames. [4] Numerical 

Methods for Partial Differential Equations. F. Durbin [5] 

Numerical inversion of Laplace transforms: an efficient 

improvement to Dubner and Abate’s method. M. Dehghan 

[6] Numerical schemes for one-dimensional parabolic 

equations with nonstandard initial Condition. Randall J. 

Leveque [7] Numerical methods for conservation laws. 

Nicholas J. Higham [8] Accuracy and stability of Numerical 

Algorithms. Young-San Park, Jong-Jin Baik [9] Analytical 

solution of the heat equation for a ground level finite area 

source. 

The research be made up of the following steps: 

In section 2, presents a short discussion of heat equation. 

Based on the study of the general finite difference method 

We apply the finite difference scheme to obtain the 

numerical solution for the heat equation respectively as an 

IBVP. In section 3, we study the exact solution. the stability 

condition of the numerical scheme in order to avoid 

oscillation. In section 4, we present an algorithm for the 

numerical solution and we develop a computer 

programming code for the implementation of the numerical 

scheme. In section 5, we implement the numerical scheme to 

estimate the accuracy and efficiency test of heat equation for 
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various thermal conductivity. In fine, the conclusions of the 

work are given in the last segment.  

 
 
 
 
 
2 GOVERNING EQUATION  

 
Consider a homogenous, insulated bar or a wire of length L. 

Let the bar be located on the x axis on the interval  l,0 .  Let 

the rod have a supply of heat. Let  txu , denote the 

temperature in the rod at any instant time t. The problem is 

to study the flow of warmth within the rod. The PDE 

governs the flow of heat on the rod is given the equation. 
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Where  is a constant and depends on the material 

properties of the rod.  In order that the solution of the 

problem exists and is unique, we want to impose the 

subsequent conditions: 

1) Initial condition, at time t=0, the temperature is 

prescribed, 

                          lxxfxu  0,0,  

2) Boundary conditions: Since the bar is of length l, 

boundary condition at x=0 and at x=l are to be 

prescribed. These conditions are of the following 

types 

 

(a) Temperature at the ends of the bar prescribed. 

                    0,,,,0  tthtlutgtu  

(b) One end of the bar, say at x=0 & insulated.  This 

implies the condition that, 
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2.1 Exact solution of heat equation 

Fourier transform 

    dxetxutku ixk






 ,,          )2(                                                                              

Inverse Fourier transform 

   




 dxetkutxu ixk,
2

1
,


            )3(                                                         

dke
t

u

t

u ixk














2

1
 

   dkeiktku
x

u ixk2

2

2

,
2

1











 

Now Heat equation we can write, 
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  Let,   10, ku  

1A            Since      10, ku  

Then From Equation )4(  we get, 

                                 tketku
2
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Putting the value of    tketku
2

,   in equation 
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Which is the fundamental solution of the one dimensional 

heat equation. 

 

3 NUMERICAL METHODS FOR GOVERNING EQUATION 

We consider the specific one dimensional heat equation as 

an initial and boundary condition 
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With I.C     xfxu 0,       for 0,0  tlx  

        B.C         0,,,,0  tthtlutgtu  

Finite difference techniques for solving the one dimensional 

heat equation can be considered according to the number of 

spatial grid points involved, the number of time levels used, 

whether they are explicit or implicit in nature. 

 

3.1 Explicit centered difference scheme 
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The simplest numerical discretization of heat )5(  is the 

explicit centered difference scheme which is obtained by a 

first order forward difference in time and the second order 

centered difference in space. 
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Therefore, the explicit centered difference scheme of the heat 

equation (5) is 
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3.2 Crank Nicolson Scheme  

In order to achieve the second order accuracy in both space 
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3.3 Stability condition for explicit Centered difference 

scheme 
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Therefore, we find the amplification factor 








 









 




2
sin21

2
sin21

2

2

xk

xk





  

Since 0
2

sin 2 






 xk
and 0 , it follows that 1  

Consequently, the Crank-Nicolson method is 

unconditionally stable. 

4 ALGORITHM FOR THE NUMERICAL SOLUTION 

To find the numerical solution of the model, we have to 

accumulate some variables which are offered in the 

following algorithm. 

Input: nx  and nt are the number of spatial and temporal 

mesh points respectively.  

,ft the right end of (0, 𝑇)        

,dx  the right end point of (0, 𝑏) 

,0u  the initial concentration density, apply as initial 

condition 

,au  left hand boundary condition  

 , heat diffusion rate 

Output:  txu ,  the solution matrix  

Initialization: 
nt

T
dt

0
 the temporal grid size  

nx

b
dx

0
 the spatial grid size   

2h


   

Algorithm of ECDS 

Step 1. Calculation for concentration profile of explicit 

centered difference scheme  

end

end

uuuu

nxifor

ntkfor

k

i

k

i

k

i

k

i ][)21(

  to2 

  to1 

1

11
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


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Step 2: output 𝑢(𝑥, 𝑡) 

Step 3: Figure Presentation  

Step 4: Stop 

 Algorithm of CNS 

A =left hand matrix of the scheme 

B =right hand matrix of the scheme 

Step 1. Calculation for concentration profile of Crank-

Nicolson scheme  

 

 

end

CAknxu

uuBC

knxuuu

ntkfor

\,:2

1,:2

1  to2 
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Step 2: output  txu ,  

 Step 3: Figure Presentation 
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 Step 4: Stop 

5 COMPUTATIONAL RESULTS AND DISCUSSION  

We implement two numerical finite difference schemes that 

are first order Explicit Centered Difference Scheme (EUDS) 

and second order Crank-Nicolson Scheme (CNS) by 

computer programming code and perform numerical 

simulation as described below. 

 

5.1 Comparative study of heat equation in Different Time 

Step 

 We present numerical simulation results based on first 

order i.e. explicit centered difference scheme (EUDS) and 

second order Crank-Nicolson scheme (CNS). Figure-1 

shows temperature distribution of exact solution in different 

time step. Figure-2 shows Comparison of temperature 

distribution of exact, ECDS and CNS solution in different 

time step  =0.25
12 sm  . From the following figure we see 

that the temperature distribution of CNS and ECDS are close 

nearer to exact solution. In figure-3 shows Comparison of 

temperature distribution of exact, ECDS and CNS solution 

in different time step at 0287.0 and 007.0  xt  

where solid red line represents the exact solution, the 

dot(blue) line represents the CNS solution and the solid 

green line represents the ECDS solution. In figure-4 

Temperature distribution of exact, ECDS and CNS solution 

for last time step at .03.0 and  067.0  xt In figure-

5 Temperature distribution of exact, ECDS and CNS solution 

for last time step at 0287.0 and 007.0  xt .  

     

Figure-1: Temperature distribution of exact solution in 

different time step 

 

Figure-2: Comparison of temperature distribution of exact, 

ECDS and CNS solution in different time step  =0.25
12 sm  

   

Figure-3: Comparison of temperature distribution of exact, 

ECDS and CNS solution in different time step at 

0287.0 and 007.0  xt  

 

Figure-4: Temperature distribution of exact, ECDS and CNS 

solution for last time step at 03.0 and  067.0  xt  

 

Figure-5: Temperature distribution of exact, ECDS and CNS 

solution for last time step at 0287.0 and 007.0  xt  
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Figure-6: Temperature distribution of CNS solution for 

  =0.5
12 sm  and  =1

12 sm . 

 

 

 Figure-7: Temperature distribution of CNS  for  

sm / 3.0 2 , and 01.0t 03.0  x . 

From figure-6 shows the numerical solution of  Crank-

Nicolson scheme for 
125.0  sm  and 

12 1  sm

where has no unstable condition(no more zigzag) but in 

figure-7  shows the solution of ECDS for 
12 3.0  sm  

where has enough zigzag and it demonstrations that CNS 

gives better pointwise solution then explicit centered 

difference scheme. 

CONCLUSION 

The study has presented the exact and numerical solution of 

heat equation by using first order explicit centered difference 

scheme and 2nd order Crank-Nicolson scheme with an initial 

condition and two boundary condition. Here numerical 

experiment is presented graphically for different thermal 

conductivity. We have shown that the numerical scheme of 

ECDS is conditionally stable and CNS is unconditionally 

stable and studying the stability condition in terms of time 

step, it’s observed that CNS is more efficient and accurate 

then explicit centered difference scheme. The results show 

that the temperature distribution is moving with varying the 

heat diffusive coefficient with respect to time and space. 
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